

Hercules

Bulk Data Transfer over SCION

Presented by Matthias Frei and François Wirz

Project Scope

High-speed large file transfer over Internet

• Large = Terabyte-scale data transfers

Use Cases

- Data-intensive science: healthcare, physics, big data, etc.
- Remote processing, data needs to be transmitted beforehand

• Remote backup

Traditional Approaches

• FTP over TCP/IP

- TCP suffers from degraded performance with high latency and random losses
- Poor multipath support
 - Open many TCP streams and hope and pray
 - Multipath TCP in the future
- Poor utilisation of available capacity
- Science DMZ

ETH zürich

- Designated data transfer infrastructure, in front of enterprise firewall
- Simple packet filter, whitelist source IPs

SCIENCE DMZ

How can SCION Speed up File Transfer?

Clean multipath communication

- Multiple disjoint paths
- Utilize local backup links

How can SCION Speed up File Transfer?

Clean multipath communication

- Multiple disjoint paths
- Utilize local backup links
- Simplified congestion control & low loss thanks to COLIBRI quality-of-service system
- LightningFilter: packet filter for Science DMZ with strong cryptographic packet authentication

Hercules

ETH zürich

- SCION/UDP packet blasting + retransmits
 - "Reliable Blast UDP"[1]
- Range ACKs at fixed frequency
- Performance-oriented congestion control [2]
 - Link empirical performance to actions taken

[1] "<u>Reliable Blast UDP : Predictable High Performance Bulk Data Transfer</u>", Eric He, Jason Leigh, Oliver Yu and Thomas A.
DeFanti, Proceedings of IEEE Cluster Computing, Chicago, Illinois, September, 2002
[2] "<u>PCC: Re-architecting Congestion Control for Consistent High Performance</u>", Mo Dong, Qingxi Li, Doron Zarchy, P. Brighten Godfrey, and Michael Schapira, 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15)

Hercules

ETH zürich

AF_XDP₁₃ for high performance SCION/UDP

- Published in December 2018 available in Linux >= 4.18 zero-copy mode in Linux >= 5.1
- Bypass Linux networking stack for send/receive
- Bypass SCION dispatcher

[3] "Accelerating networking with AF_XDP", Jonathan Corbet, LWN.net, 2018

PMD for AF_XDP: Zhang Qi, Li Xiaoyun

Demo

- Transfer file between two SCION hosts in same AS
- Directly connected, 40GbE
- Not the target use case, but highperformance SCION links are being established

Demo

<pre>(0) 0:demo* 1:src- matfrei@sender\$ sudo numactl -lcpunodebind=netdev:ens787f1/hercules -i ens787f1 -q 0 -l 17-ffaa:0:1102,[172.16.0.1]:10000 -d 17-ffaa: 0:1102,[172.16.0.2]:10000 -t data-20G.bin -pcc=false Waiting for receiver to get ready OK</pre>
TimeCompletionGoodputThroughput nowThroughput targetThroughput avgPkts sentPkts rcvd1.1s0.00%25.4Gbps26.9Gbps2.2Mpps40.0Gbps3.3Mpps25.5Gbps2.1Mpps224492222.1s34.92%30.6Gbps32.5Gbps2.7Mpps40.0Gbps3.3Mpps31.6Gbps2.6Mpps5411840113.1s53.98%31.9Gbps33.8Gbps2.8Mpps40.0Gbps3.3Mpps33.2Gbps2.8Mpps8456448194.1s73.32%32.7Gbps34.7Gbps2.9Mpps40.0Gbps3.3Mpps34.2Gbps2.8Mpps11562961285.1s95.80%33.4Gbps35.4Gbps2.9Mpps40.0Gbps3.3Mpps35.0Gbps2.9Mpps14742250365.3s100.00%33.0Gbps35.0Gbps2.9Mpps40.0Gbps3.3Mpps34.6Gbps2.9Mpps1519243338
Transfer completed: Duration: 5.272s Filesize: 20.0GiB Rate: 32.6Gb/s (3.8GiB/s) Sent/Chunk: 1.000 Rcvd/Chunk: 0.000 matfrei@sender\$ shasum data-20G.bin 722299740a266f799a2460b40cf4e00b0d772b46 data-20G.bin matfrei@sender\$
<pre>matfrei@receiver\$ sudo numactl -lcpunodebind=netdev:ens786f1/hercules -i ens786f1 -q 0 -l 17-ffaa:0:1102,[172.16.0.2]:10000 -o data/r ecv.bin Preparing file for receive 0K</pre>
Time Completion Goodput Throughput now Throughput avg Pkts rcvd Pkts sent 1.0s 13.68% 23.56bps 24.96bps 2.1Mpps 24.86bps 2.1Mpps 2077949 8 2.0s 34.53% 29.76bps 31.56bps 2.6Mpps 31.46bps 2.6Mpps 5243493 16 3.0s 54.60% 31.36bps 33.26bps 2.8Mpps 33.16bps 2.8Mpps 8291945 25 4.0s 75.01% 32.26bps 34.96bps 2.9Mpps 14570073 42 5.0s 95.94% 33.06bps 34.86bps 2.9Mpps 15187297 44
Transfer completed: Duration: 5.237s Filesize: 20.0GiB Rate: 32.8Gb/s (3.8GiB/s) Sent/Chunk: 0.000 Rcvd/Chunk: 1.000 matfrei@receiver\$ shasum data/recv.bin 722299740a266f799a2460b40cf4e00b0d772b46 data/recv.bin matfrei@receiver\$ ∏

Demo Summary

- Hercules achieves ~30Gbps transfer rate
 - Disk I/O not included, much slower on demo host
- Comparison
 - iperf3 with TCP achieves ~20Gbps (one thread)

 $S(\mathbb{H})$

- iperf3 with UDP, ~4Gbps
- FTP achieves ~8Gbps

ETH zürich